Finding the Maximum Area Centrosymmetric Polygon in a Convex Polygon

ثبت نشده
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithm for finding the largest inscribed rectangle in polygon

In many industrial and non-industrial applications, it is necessary to identify the largest inscribed rectangle in a certain shape. The problem is studied for convex and non-convex polygons. Another criterion is the direction of the rectangle: axis aligned or general. In this paper a heuristic algorithm is presented for finding the largest axis aligned inscribed rectangle in a general polygon. ...

متن کامل

Finding the Maximum Area Parallelogram in a Convex Polygon

We consider the problem of finding the maximum area parallelogram (MAP) inside a given convex polygon. Our main result is an algorithm for computing the MAP in an n-sided polygon in O(n2) time. Achieving this running time requires proving several new structural properties of the MAP, and combining them with a rotating technique of Toussaint [10]. We also discuss applications of our result to th...

متن کامل

Finding all Maximal Area Parallelograms in a Convex Polygon

We consider the problem of finding the maximum area parallelogram (MAP) inside a given convex polygon. Our main result is an algorithm for computing the MAP in an n-sided polygon in O(n) time. Achieving this running time requires proving several new structural properties of the MAP. Our algorithm actually computes all the locally maximal area parallelograms (LMAPs). In addition to the algorithm...

متن کامل

Maximum-Area Triangle in a Convex Polygon, Revisited

We revisit the following problem: Given a convex polygon P , find the largest-area inscribed triangle. We show by example that the linear-time algorithm presented in 1979 by Dobkin and Snyder [1] for solving this problem fails. We then proceed to show that with a small adaptation, their approach does lead to a quadratic-time algorithm. We also present a more involved O(n logn) time divide-and-c...

متن کامل

Solving Geometric Problems with the Rotating Calipers *

Shamos [1] recently showed that the diameter of a convex n-sided polygon could be computed in O(n) time using a very elegant and simple procedure which resembles rotating a set of calipers around the polygon once. In this paper we show that this simple idea can be generalized in two ways: several sets of calipers can be used simultaneously on one convex polygon, or one set of calipers can be us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011